NOTE ON MULTIPLE GENERAL EQUILIBRIA WITH CHILD LABOUR

Krushik Basu

INSTITUTE FOR SOCIAL AND ECONOMIC CHANGE
2001
Institute for Social and Economic Change (ISEC) is engaged in interdisciplinary research in analytical and applied areas of the social sciences, encompassing diverse aspects of development. ISEC works with central, state and local governments as well as international agencies by undertaking systematic studies of resource potentials, identifying factors influencing growth and examining measures for reducing poverty. The thrust areas of research include state and local economic policies, issues relating to sociological and demographic transition, environmental issues and fiscal, administrative and political decentralization and governance. It pursues fruitful contacts with other institutions and scholars devoted to social science research through collaborative research programmes, seminars, etc.

The Working Paper Series provides an opportunity for ISEC faculty, visiting fellows and PhD scholars to discuss their ideas and research work before publication and to get feedback from their peer group. Papers selected for publication in the series present empirical analysis and generally deal with wider issues of public policy at a sectoral, regional or national level. These working papers undergo review but typically do not present final research results, and constitute works in progress.
A NOTE ON MULTIPLE GENERAL EQUILIBRIA
WITH CHILD LABOUR

Kaushik Basu

Abstract

It has been conjectured, using partial equilibrium analysis, that the
market for child labour is likely to exhibit multiple equilibria, with children
working in some but not in others. Such a result has important policy
implications, especially concerning the use of a legislative ban on child
labour. This paper shows that the multiple equilibrium result holds in a
formal general equilibrium model. The paper develops the concept of a
"wage bill curve" and shows how this is a useful tool for studying the
relation between household preference and multiple equilibria. It also
clarifies the kind of welfare criteria needed to justify a legislative ban on
child labour.

JEL Classification Nos.: J20, D51, D60

INTRODUCTION

Consider a poor country in which children are viewed as potential
workers and there is no law - at least none that is properly enforced - that
prohibits child labour. The fact that around 250 million children work the
world over (see Basu, 1999) suggests that the case we are considering is the
norm rather than the exception. There is now quite a substantial empirical
literature demonstrating that the typical parent sends a child out to work only
when threatened by extreme poverty (see Grootaert and Patrinos, 1999; Ray
2000). There is also a small analytical literature which argues that if a child's
non-work is a luxury good (as the above empirical findings suggest) then the
economy is likely to have multiple equilibria with one equilibrium in which
children do not work and another in which they do (Basu and Van, 1998;
Swinnerton and Rogers, 1999; Bardhan and Udry, 1999; Lopez- Calva, 2000).

1. For helpful comments I am grateful to David Easley, Ron Jones, Tapan Mitra, Henry
Wan, and the seminar participants at Rochester University.

2. Department of Economics, Cornell University, Ithaca, NY 14853
Fax: 607-255-2818, E-mail: kb40@cornell.edu
[The author is C. Marks Professor at Cornell University and V.K.R.V. Rao Visiting
Professor at the Institute for Social and Economic Change, Bangalore.]
However, in the existing literature this result is established in a partial equilibrium framework.

If this theoretical claim is generally valid, then it has important policy implications. It will mean that a legal ban can (under some circumstances) be an effective way to deal with the problem; because the ban could prevent the economy from getting into the equilibrium in which children work and deflect it to the equilibrium where they do not. This has implications also for international policy initiatives, such as those concerning labour standards (Brown, 1998; Dixit, 1998; Jafarey and Lahiri, 1999).

The aim of this paper is to construct a general equilibrium model of an economy in which children are potential workers and then show that under some natural restrictions on preference, multiple equilibria are indeed likely in this model. The paper also develops the simple geometric idea of a 'wage bill curve' and shows how this can be used to understand the possibility of multiple equilibria. While there have been some attempts to bring elements of general equilibrium argument into the picture (Swinnerton and Rogers, 1999; Baland and Robinson, 2000; Ranjan, 2000), there has as yet been no full general equilibrium treatment of the problem of child labour. Hence the objective of this paper is essentially a methodological one - to show how arguments made in the context of partial equilibrium models can be extended to a general equilibrium framework. Viewed in the abstract, the model considers the possibility of multiple equilibria when a single decision making unit (household) decides on the labour supply of more than one agent.

THE MODEL

We consider an economy with 1 worker household, 1 capitalist household and 1 firm. These are all price-takers and so the restriction of there being one of each kind causes no loss of generality.

Each worker household has 1 adult and 1 child. The adult has an endowment of labour equal to 1 unit and the child has an endowment of labour equal to \(\gamma \) unit, where \(\gamma \in (0, 1] \). Using \(c \) to denote aggregate household consumption and \(l \) aggregate leisure, the household's utility function is given by

\[
u = u(c, l)\]

where \(c \geq 0, \ l \in [0, 1 + \gamma] \), where leisure \(l \) is simply the amount of household labour endowment that is not sold. Hence, if it consumes \(l \) units of leisure, it supplies \(1 + \gamma - l \) units of labour. It will be assumed that when the household supplies \(c \) units of labour, it begins with the adult's labour, and supplies child
labour only after it has supplied the 1 unit of adult labour. This means that it
does not matter if the child's leisure is measured in some units different from
adult leisure (see Basu, 2000). This assumption also means that as soon as we
know how much leisure, \(\ell \), the household consumes, we know not only how
much labour the household supplies \((1 + \gamma - \ell)\) but how much child labour is
supplied \((\max \{\gamma - \ell, 0\}\).

Next consider the following assumptions concerning the household's
utility function.

Assumption 1: The utility function \(u: \mathbb{R}_+ \times [0, 1 + \gamma] \rightarrow \mathbb{R}\) is continuous,
(weakly) monotonic and quasi-concave.

We shall on some occasions, using a stronger concavity assumption
as follows.

Assumption 2: The utility function \(u\) is strictly quasi-concave.

Let \(p\) be the price of the consumable good and \(w\) the price of labour.
Let \(\alpha\) be the share of the firm owned by the worker household. Hence, if the
total amount of profit earned by the firm is \(\pi\), the worker household's problem
is as follows:

\[
\max_{c, \ell} u(c, \ell)
\]

subject to \(pc \leq w(1 + \gamma - \ell) + \alpha \pi, \ c \geq 0, \ \text{and} \ \ell \in [0, 1 + \gamma].\)

Assumptions 1 and 2 ensure that for every \(p \geq 0\), \(w\) and \(\alpha \pi\), there
is a unique solution to the above problem. Also, since we confine our attention
entirely to Walras equilibria it is harmless to normalize and set \(p = 1\). We do
so from now on; and hence write the solution to the above problem as follows.

\[
c = c(w, \alpha \pi)
\]

\[
\ell = \ell(w, \alpha \pi)
\]

Next let us turn to the capitalist household. This household never
supplies labour. We may equivalently assume that this household has no
endowment of labour. This assumption causes no loss of generality. As a matter
of fact we could have assumed the capitalist household to be exactly like the
worker household, excepting for the fact that it has rights to a larger share of
the firm's profits. Then there could be price ranges where the capitalist
household's profit share is so large that it prefers not to send the child to work.
Continuing with our description of the capitalist household let us assume that
it owns a share \((1-\alpha)\) of the firm. Since its utility depends only on its consumption, \(c'\), and its budget constraint is given by
\[
c' \leq (1-\alpha)\pi.
\]
we know that this household will choose \(c'\) so that
\[
c' = (1-\alpha)\pi.
\]
The firm's production function is given by
\[
x = f(L),
\]
where \(L\) is the amount of labour used and \(x\) the amount of output produced. The production function is required to satisfy the following.

Assumption 3. The production function \(f: \mathbb{R}_+ \rightarrow \mathbb{R}_+\) is strictly monotonic, strictly concave, bounded from above, and has the properties that \(f(0) = 0\) and there exists \(b > 0\) such that \(f(L) \leq bL\), for all \(L \geq 0\).

The firm's problem is to:
\[
\max_{L} \pi = f(L) - wL.
\]

Given Assumption 3. for every \(w \in \mathbb{R}_+\) there is a unique \(L\) chosen by the firm. We denote this by
\[
L = L(w).
\]
Define
\[
x(w) = f(L(w))
\]
and
\[
\pi(w) = x(w) - wL(w).
\]

In this paper, an economy, \(\Xi\), is fully described by \(u, f\) and \(\alpha\). Hence
\[
\Xi = <u, f, \alpha>.
\]

Given an economy, \(\Xi = <u, f, \alpha>\), we define \(w^*\) to be a **Walras equilibrium** if
\[
c(w^*, \alpha\pi(w^*)) + (1-\alpha)\pi(w^*) = x(w^*). \tag{1}
\]

In stating the Walras equilibrium in this manner we are making use of the Walras law of markets, which ensures that if the goods market is in equilibrium (i.e. (1) is true) then the labour market must be in equilibrium.

To ensure that we are not working in a vacuum it is worth noting:
Theorem 1. Every economy, $\Xi = \langle u, f, \alpha \rangle$, satisfying assumptions 1-3, has at least one Walras equilibrium.

Proof. Define $z(w) \equiv c(w, \alpha \pi(w)) + (1 - \alpha)\pi(w) - x(w)$. That is, $z(w)$ is the excess demand function for the good. Assumptions 1-3 guarantee that z is a function.

Choose $b > 0$ such that $f(l) \leq bl$, $\forall l \geq 0$. This exists by Assumption 2. It is obvious that if $w = b$, $x(w) = 0$. $\pi(w) = 0$. Hence, $z(b) = b(1 + \gamma - \ell(b, 0))$, from the definition of $z(\cdot)$ and the worker-household's budget constraint. Hence $z(b) \geq 0$. If $z(b) = 0$, then $w = b$ is a Walras equilibrium.

So suppose $Z(b) > 0$.

 Clearly, $\exists \hat{w} < b$ such that

$$L(\hat{w}) > 1 + \gamma$$

$$\Rightarrow L(\hat{w}) > 1 + \gamma - \ell(\hat{w}, \alpha \pi(\hat{w})).$$

$$\Rightarrow x(\hat{w}) - \pi(\hat{w}) > w[1 + \gamma - \ell(\hat{w}, \alpha \pi(\hat{w}))].$$

$$\Rightarrow z(\hat{w}) < 0,$$

by the worker-household's budget-constraint. It is easy to check that c, π, and x are continuous functions. Hence, z is continuous and so $\exists w^* \in [\hat{w}, b]$ such that $z(w^*) = 0$. ||

MULTIPLE EQUILIBRIA

To see how multiple equilibria can arise in this model and how that is more plausible if households treat child leisure (or, more generally, non-work) as a luxury good! I will develop a diagrammatic representation of the above model. In doing so, we will consider the two polar cases $\alpha = 1$ and $\alpha = 0$. If $\alpha = 1$, it is as if there is only one household - the worker household. The geometric depiction of the Walras equilibrium in this case is fairly standard (Mas-colell, Whinston and Green, 1995, Ch. 15). In Figure 1, the horizontal axis measures the amount of labour used by the firm. The production function is as shown. If we treat the point marked $1 + \gamma$ as the origin and measure the household's leisure consumption in the eastward direction and goods consumption along the broken vertical line, we can depict the household's indifference curves in this space. The figure assumes $p = 1$.

5
Given assumptions 1 and 2, there will exist a unique point where the production function is tangential to an indifference curve. E denotes this point in the figure. By a well-known argument, the slope of the tangent at E is the Walras equilibrium wage rate. The profit earned by the firm is shown by the vertical intercept of the tangent on the f(L)-axis. What this figure clarifies is that, if the workers earn all the profits, the economy will have a unique equilibrium. Hence, we know that a necessary condition for the existence of multiple equilibria is that $\alpha < 1$. This is quite a realistic assumption, since one cannot think of any country in the world where workers earn all the profits.

While the possibility of multiple equilibria arises, as soon as we have $\alpha < 1$, for ease of exposition, I will consider the polar extreme of $\alpha = 0$. Hence, there is a separation between the labouring households and the capitalist households. But once the logic of my argument and the diagrammatic technique is understood, it will be evident that the analysis carries over to all cases of $\alpha < 1$.
Now, every time we are given a \(w \), the (worker) household's budget constraint is given by a line having a slope of \(w \) (a negative slope of \(w \) to be more precise). \textit{through point} \(0 \). There will be no positive intercept, such as \(\pi \) shown in Figure 1, since the household earns no profit. So if the household's leisure consumption is \(1 + \gamma \), its income is zero.

A crucial instrument in depicting a Walras equilibrium in this case is what will be called the 'wage bill curve'. This is illustrated in Figure 2 and it is derived as follows. Consider any point on the graph of the production function, such as \(A \). Consider the wage, \(w \), for which \(A \) would be the profit-maximizing point of the firm. Let \(\pi(w) \) be the profit of the firm at that \(w \). Hence, this is given by \(OB \) in Figure 2. From the line segment \(AF \), starting from point \(A \), deduct the profit. The point one gets by so doing (\(D \) in Figure 2) is a point on the wage bill curve. By varying \(A \) we get a locus of points like \(D \). That locus is the wage bill curve.

![Figure 2](image-url)
Since \(f(0) = 0 \), the wage bill curve must start at 0 in Figure 2. Since by assumption 2, \(f \) is bounded from above, as \(L \) becomes large, the wage bill curve converges to zero. This explains the shape of the wage bill curve shown in Figure 2.

In brief, if the wage is such that the firm chooses point A, then the height of the wage bill curve (OF) is the total wage bill generated at that point and the vertical gap between the production function and the wage-bill curve at that point (namely, AD) depicts the aggregate profit in the economy.

Next consider the worker household's problem. Treating the point \(1 + \gamma \) as its origin, let us measure its leisure on the horizontal axis and goods consumption on the vertical axis (the broken line). Now consider all possible budget constraints through point 0 and on each budget constraint mark the household's optimal point. By joining such points we get the standard offer curve. Let us suppose that the offer curve is GK. There is no reason to suppose that G will coincide with the point marked \(1 + \gamma \). The figure suggests this purely for reasons of aesthetics.

Theorem 2. The Walras equilibria of an economy, \(\Xi = \langle u, f, 0 \rangle \), are depicted by the points of intersection between the offer and wage bill curves.

To see this consider point E* in Figure 2 where the wage bill curve intersects the offer curve. Suppose the wage rate \(w^* \), is given by the slope of the line joining E* and 0. Clearly, given \(w^* \), the household will choose leisure and consumption depicted by E*. since E* lies on the offer curve. Since EE* is the total profit in the economy, and a line of slope \(w^* \) at E has an intercept on the \(y(L) \) axis equal to EE*, given \(w^* \), the firm chooses point E. Since the capitalist household uses the entire profit to consume goods, the total demand for goods (EE* + E* M) equals total supply of goods EM.

It is now easy to see how multiple equilibria can arise. All one needs is for the offer curve to intersect the wage bill curve more than once, as illustrated in Figure 3.
It has been often suggested that parents send their children to work only when that is necessary in order to attain some critical minimum consumption, S. This was called the 'luxury axiom' in Basu and Van (1998). One formal and somewhat extreme interpretation of this is as follows.

Assumption 4. There exists $S > 0$, such that, if $S \geq c \geq c' \geq 0$, then $u(c, 0) \geq u(c', \ell)$, for all $c, \ell \in [0, 1 + \gamma]$.

This axiom simply asserts that the offer curve rises vertically at G, at least up to S. The offer curve GSK in Figure 3 satisfies assumption 4. A familiar example of a utility function satisfying assumption 4 is the Stone-Geary utility function.

I had argued in Basu (1999) that there is a large literature and evidence that supported this axiom. It is worth exploring the implications of this axiom in a general equilibrium model of an economy. The next theorem states a necessary and sufficient condition for the existence of a Walras equilibrium in which the children of worker households do full-time work.
Theorem 3. Suppose \(\Xi = \langle u, f, 0 \rangle \) is an economy satisfying assumptions 1 and 3. For this economy to have a Walras equilibrium in which worker household children do full-time work it is necessary that assumption 4 be satisfied. This becomes a sufficient condition if (assuming \(f' \) is differentiable) \(f' (1 + \gamma) (1 + \gamma) \leq S \).

The condition \(f' (1 + \gamma) (1 + \gamma) \leq S \) simply says that, when all adults and children of worker households work, the marginal product of labour is so low that the wage bill is less than the subsistence wage bill. The proof of Theorem 3 is obvious by using the diagrammatic technique developed above.

Note that assumption 4 implies that child leisure is a luxury good. Hence, to have a Walras equilibrium in which worker household children do full-time work it is necessary for child leisure to be a luxury good.

POLICY

If an economy is as depicted in Figure 3, and suppose it is, currently, in equilibrium at \(E_1 \). A ban on child labour would push the economy to the sole remaining equilibrium at \(E_2 \). It is obvious that at \(E_2 \), worker households are better off. Note also that once the equilibrium has moved to \(E_2 \), the legal ban is not, strictly speaking, needed any more. Legislative actions of this kind, which, once put into effect, can be removed without the economy reverting to the original situation may be called 'ratchet legislation'. This model suggests that if child labour is driven by subsistence needs, it is possible that there will be multiple equilibria, and in that case there is scope for putting an end to child labour through the use of ratchet legislation.

This general equilibrium analysis sheds light on an important policy question, which remained unclear in the partial equilibrium model. It makes it plain that, in an economy in which child labour is prevalent, a ban on child labour could result in an equilibrium outcome which is Pareto optimal but, nevertheless, a ban on child labour cannot be justified on a purely Paretoian ground. As is obvious from Figure 3, all equilibria in this economy are Pareto optimal. We have to think of social welfare functions, which attach a special weight to workers' welfare or a negative weight to child work, in order to justify a ban. The welfare function can be Pareto inclusive, but the inclusion of the Pareto criterion is not sufficient.
References

Recent Working Papers

GOVINDA RAO
Intergovernmental Transfers in Selected Countries

MATHIYAZHAGAN
People's Choice of Health Care Provider : Policy Options For Rural India

SUPRIYA ROYCHOWDHURY
The State in Comparative Politics : A Critique

M GOVINDA RAO
Principles of Intergovernmental Transfers : Have the Finance Commissions Followed Them?

M GOVINDA RAO
Intergovernmental Fiscal Arrangements in a Transitional Economy : A Look At Vietnam

SYED AJMAL PASHA
Forest Use and Management: A Comparative Perspective from India and Canada

S AMANULLA AND B KAMAIAH
Indian Stock Market : Price Integration and Market Efficiency

ALLEN ROY, S AMANULLA AND B KAMAIAH
Indian Stock Market : A Test of A Semi-Strong Form of Efficiency

K V RAJU AND TUSHAAAR SHAH
Revitalisation of Irrigation Tanks in Rajasthan: An Approach

PRABIR KUMAR MOHANTY AND B KAMAIAH
Volatility and its Persistence in Indian Stock Market: A Case Study of 30 Scrips

54. ALLEN ROY, PRAVAKAR SAHOO AND B KAMAIAH
 A Causal Test of Fiscal Synchronisation Hypothesis in India

55. ALLEN ROY, B KAMAIAH AND M GOVINDA RAO
 Educational Expenditure Needs of Large Indian States : A Normative View

56. G K KARANTH
 Does Replication Mean Consensus

57. H G HANUMAPPA
 State Policy Initiatives and Agricultural Development: A Case Study of Karnataka Province, India

58. G THIMMAIAH
 Federalism and Economic Development: Indian Experience

59. T KANNAN
 Caste Violence and Dalit Consciousness: A Critical Interpretation of Dominance

60. K V RAJU AND JEFFREY D BREWER
 Conjunctive Water Management in Bihar

61. MADHUSHREE SEKHER
 Local Organisations and Participatory CPR Management: Some Reflections

62. PRATAP CHANDRA BISWAL AND B KAMAIAH
 Stock Market Development in India: Is There Any Trend Break?

63. SANGHAMITRA SAHU AND B KAMAIAH
 Some Aspects of Monetary Targeting in India

64. AMALENDU JYOTISHI
 Swidden Cultivation: A Review of Concepts and Issues
65. K V RAJU
 Participatory Irrigation Management
 in Andhra Pradesh: Promise, Practice and a Way Forward

66. D RAJASEKHAR
 Non-Governmental Organisations in India: Opportunities and Challenges

67. S JYOTHIS
 Willingness to Participate in Biodiversity Conservation in Periyar Tiger Reserve:
 A Contingent Valuation

68. ANAND INBANATHAN
 Power, Patronage and Accountability in the Panchayats of Karnataka

69. PRATAP CHANDRA BISWAL
 B KAMAIAH
 On Stock Market Development, Banks and Economic Growth in India

70. N R BHANUMURTHY
 Testing Long-Run Monetarists' Propositions in Some Industrialized Countries

71. PRABIR KUMAR MOHANTY
 B KAMAIAH
 Does Seasonal Pattern in Indian Stock Returns Contain a Unit Root?

72. V VIJAYALAKSHMI &
 B K CHANDRASHEKAR
 Gender Inequality, Differences, and Identities: Women and Local Governance
 in Karnataka

73. DEBASHIS &
 B KAMAIAH
 Simple Sum Versus Divisia Monetary Aggregates: An Empirical Evaluation

74. T S JEENA
 Wetland Conversion: The Case of Backwater Reclamation in Kerala

75. P H RAYAPPA, T V SEKKHER
 M RAMAKRISHNA REDDY
 Population Policy for Karnataka: A Suggested Framework

76. D RAJASEKHAR
 Economic Programmes and Poverty Reduction: NGO Experiences from Tamil Nadu

77. PRAVAKAR SAHOO
 GEETHANJALI NATARAJ, B KAMAI
 Savings and Economic Growth in India: The Long-run Nexus

Price: Rs.30-00